关于MD5算法原理与常用实现方式

zhangSir134 2024-04-02 13:57:55编程技术
84

定义

MD全称Message-Digest,即信息摘要,所以MD家族的算法也叫信息摘要算法

MD家族有MD2、MD3、MD4、MD5,一代比一代强。

所以MD5是MD算法家族中,目前最常用的一种加密算法。

任何信息,都可以通过MD5算法运算生成一个16字节(128位)的散列值,但却无法通过这16个字节的散列值获得加密前的信息。

最终这16个散列值,通常用一个长度为32的十六进制字符串来表示。

这就是MD5最重要的一个特性:加密不可逆。

MD5特点

加密不可逆,即无法通过密文得到原文。

不变性,即相同的原文,通过MD5算法得到的密文总是相同的。

散列性,即对原文作轻微的改动,都可导致最终的密文完全改变。

常见应用场景

1、校验文件的完整性

如果张三给李四传了一个文件,如何确认这个文件传给李四是完整的呢

张三传文件前,先对文件做一个MD5加密,同时把MD5加密的密文传给李四

李四收到文件,也对该文件做MD5加密,如果得到的密文和张三给的密文一样,就说明文件是完整的。

2、存储用户密码

用户密码,理论上也不能直接明文存储在数据库中,因为一旦数据库被破解,用户的密码就全部丢失了

所以可以将用户密码做一个MD5加密,然后将密文存在数据库中

用户登录的时候,可以将用户的密码进行MD5加密,然后比对密文和数据库中的密文是否一致,来判断用户前台填的密码是否正确。

这只是一个思路,一般不会这么简单,一般生产环境会对用户密码加盐加密等等的处理,用户信息更加重要的,则需要更加复杂的计算逻辑。

原理

MD5的加密过程,整体来看,就是先定义四个值,然后用这四个值,对原文信息进行计算,并得到新的四个值,然后再对原文进行计算,再得到新的四个值,如此循环一定次数,最终对最后的这四个值进行简单的字符串拼接,就得到了最终的密文。

主要就是下面这3步:

1、填补信息

用原文长度位数对512求余,如果结果不为448,就填充到448位。填充是第一位填1,后面填0。512-448=64,用这剩余的64位,记录原文长度。

最终得到一个填补完的信息(总长=原文长度+512位)

2、拿到初始值

四个初始值,是MD5这个算法提前定义好的,分别是4个32位的值,总共刚好128位。

我们用ABCD命名:

  • A=0x01234567

  • B=0x89ABCDEF

  • C=0xFEDCBA98

  • D=0x76543210

3、真正的计算

计算分为多次循环,每次循环,都是用ABCD和原文在第一步填补完的信息,进行计算,最终得到新的ABCD。最后将最后一次ABCD拼成字符串,就是最终的密文。

  • 循环先分为主循环,每个主循环中又套有子循环。

  • 主循环次数 = 原文长度/512。

  • 子循环次数 = 64次。

我们看看单次子循环都做了什么:

下面是单次子循环真正的计算逻辑(这段实现摘自网友):

MD5算法.png

图中,A,B,C,D就是哈希值的四个分组。每一次循环都会让旧的ABCD产生新的ABCD。一共进行多少次循环呢?由处理后的原文长度决定。

  • 假设处理后的原文长度是M

  • 主循环次数 = M / 512

  • 每个主循环中包含 512 / 32 * 4 = 64 次 子循环。

上面这张图所表达的就是单次子循环的流程。

下面对图中其他元素一一解释:

1.绿色F

图中的绿色F,代表非线性函数。官方MD5所用到的函数有四种:

F(X, Y, Z) =(X&Y) | ((~X) & Z)
G(X, Y, Z) =(X&Z) | (Y & (~Z))
H(X, Y, Z) =X^Y^Z
I(X, Y, Z)=Y^(X|(~Z))

在主循环下面64次子循环中,F、G、H、I 交替使用,第一个16次使用F,第二个16次使用G,第三个16次使用H,第四个16次使用I。

2.红色“田”字

很简单,红色的田字代表相加的意思。

3.Mi

Mi是第一步处理后的原文。在第一步中,处理后原文的长度是512的整数倍。把原文的每512位再分成16等份,命名为M0 ~ M15,每一等份长度32。在64次子循环中,每16次循环,都会交替用到M1 ~ M16之一。

4.Ki

一个常量,在64次子循环中,每一次用到的常量都是不同的。

5.黄色的<<

FF(a,b,c,d,Mj,s,ti)表示a=b+((a+F(b,c,d)+Mj+ti)<<<s)

<<<s表示循环左移s位

第一轮
 a=FF(a,b,c,d,M0,7,0xd76aa478)
 b=FF(d,a,b,c,M1,12,0xe8c7b756)
 c=FF(c,d,a,b,M2,17,0x242070db)
 d=FF(b,c,d,a,M3,22,0xc1bdceee)
 a=FF(a,b,c,d,M4,7,0xf57c0faf)
 b=FF(d,a,b,c,M5,12,0x4787c62a)
 c=FF(c,d,a,b,M6,17,0xa8304613)
 d=FF(b,c,d,a,M7,22,0xfd469501)
 a=FF(a,b,c,d,M8,7,0x698098d8)
 b=FF(d,a,b,c,M9,12,0x8b44f7af)
 c=FF(c,d,a,b,M10,17,0xffff5bb1)
 d=FF(b,c,d,a,M11,22,0x895cd7be)
 a=FF(a,b,c,d,M12,7,0x6b901122)
 b=FF(d,a,b,c,M13,12,0xfd987193)
 c=FF(c,d,a,b,M14,17,0xa679438e)
 d=FF(b,c,d,a,M15,22,0x49b40821)
 
第二轮
 a=GG(a,b,c,d,M1,5,0xf61e2562)
 b=GG(d,a,b,c,M6,9,0xc040b340)
 c=GG(c,d,a,b,M11,14,0x265e5a51)
 d=GG(b,c,d,a,M0,20,0xe9b6c7aa)
 a=GG(a,b,c,d,M5,5,0xd62f105d)
 b=GG(d,a,b,c,M10,9,0x02441453)
 c=GG(c,d,a,b,M15,14,0xd8a1e681)
 d=GG(b,c,d,a,M4,20,0xe7d3fbc8)
 a=GG(a,b,c,d,M9,5,0x21e1cde6)
 b=GG(d,a,b,c,M14,9,0xc33707d6)
 c=GG(c,d,a,b,M3,14,0xf4d50d87)
 d=GG(b,c,d,a,M8,20,0x455a14ed)
 a=GG(a,b,c,d,M13,5,0xa9e3e905)
 b=GG(d,a,b,c,M2,9,0xfcefa3f8)
 c=GG(c,d,a,b,M7,14,0x676f02d9)
 d=GG(b,c,d,a,M12,20,0x8d2a4c8a)
 
第三轮
 a=HH(a,b,c,d,M5,4,0xfffa3942)
 b=HH(d,a,b,c,M8,11,0x8771f681)
 c=HH(c,d,a,b,M11,16,0x6d9d6122)
 d=HH(b,c,d,a,M14,23,0xfde5380c)
 a=HH(a,b,c,d,M1,4,0xa4beea44)
 b=HH(d,a,b,c,M4,11,0x4bdecfa9)
 c=HH(c,d,a,b,M7,16,0xf6bb4b60)
 d=HH(b,c,d,a,M10,23,0xbebfbc70)
 a=HH(a,b,c,d,M13,4,0x289b7ec6)
 b=HH(d,a,b,c,M0,11,0xeaa127fa)
 c=HH(c,d,a,b,M3,16,0xd4ef3085)
 d=HH(b,c,d,a,M6,23,0x04881d05)
 a=HH(a,b,c,d,M9,4,0xd9d4d039)
 b=HH(d,a,b,c,M12,11,0xe6db99e5)
 c=HH(c,d,a,b,M15,16,0x1fa27cf8)
 d=HH(b,c,d,a,M2,23,0xc4ac5665)
 
第四轮
 a=II(a,b,c,d,M0,6,0xf4292244)
 b=II(d,a,b,c,M7,10,0x432aff97)
 c=II(c,d,a,b,M14,15,0xab9423a7)
 d=II(b,c,d,a,M5,21,0xfc93a039)
 a=II(a,b,c,d,M12,6,0x655b59c3)
 b=II(d,a,b,c,M3,10,0x8f0ccc92)
 c=II(c,d,a,b,M10,15,0xffeff47d)
 d=II(b,c,d,a,M1,21,0x85845dd1)
 a=II(a,b,c,d,M8,6,0x6fa87e4f)
 b=II(d,a,b,c,M15,10,0xfe2ce6e0)
 c=II(c,d,a,b,M6,15,0xa3014314)
 d=II(b,c,d,a,M13,21,0x4e0811a1)
 a=II(a,b,c,d,M4,6,0xf7537e82)
 b=II(d,a,b,c,M11,10,0xbd3af235)
 c=II(c,d,a,b,M2,15,0x2ad7d2bb)
 d=II(b,c,d,a,M9,21,0xeb86d391)

MD5为什么不可逆

MD5不可逆的原因,从原理上来看,

  • 第一是他使用了散列函数,即上面的FGHI函数。

  • 第二是他在里面用了大量的移位操作,即<<<,这些是不可逆的

比如有10110011,我们左移三位,变成了10011000,高三位的101被顶了,低三位用0代替了,那此时就绝对不可能用10011000再逆向得到10110011了。

java实现和使用

public class MD5Util {
    public static void main(String[] args) throws IOException {
        System.out.println(encodeString("123"));
    }
    public static String encodeString(String plainText) throws UnsupportedEncodingException {
        return encodeBytes(plainText.getBytes("UTF-8"));
    }
    public static String encodeBytes(byte[] bytes) {
        try {
            MessageDigest md = MessageDigest.getInstance("MD5");
            md.update(bytes);
            byte b[] = md.digest();
            int i;
            StringBuffer buf = new StringBuffer("");
            for (int offset = 0; offset < b.length; offset++) {
                i = b[offset];
                if (i < 0) {
                    i += 256;
                }
                if (i < 16) {
                    buf.append("0");
                }
                buf.append(Integer.toHexString(i));
            }
            return buf.toString();
        } catch (Exception e) {
            e.printStackTrace();
        }
        return "";
    }
}

以上为个人经验,希望能给大家一个参考,也希望大家多多支持站长工具网。 

md5算法 md5
THE END
colg

相关推荐

MySQL中的数据加密:MD5算法及其安全性分析
MySQL作为广泛使用的数据库管理系统,提供了多种加密方法来保护数据的安全性。其中,MD5哈希算法因其简单易用而被广泛应用于数据完整性校验和初步的密码保护。然而,随着技术...
2024-12-07 编程技术
157