在数据分析过程中,我们经常需要处理数据集中的唯一值。Pandas作为Python中强大的数据处理库,提供了多种方法来处理唯一值。其中,unique()和nunique()函数是两个常用的工具,它们分别用于获取唯一值和计算唯一值的数量。本文将详细解释这两个函数的区别及其应用场景,帮助你更好地理解和应用它们。
Pandas中Series和DataFrame的两种数据类型中都有nunique()和unique()方法。这两个方法作用很简单,都是求Series或Pandas中的不同值。而unique()方法返回的是去重之后的不同值,而nunique()方法则直接放回不同值的个数。
具体如下:
如果Series或DataFrame中没有None值,则unique()方法返回的序列数据的长度等于nunique()方法的返回值(如上述代码中所展示的)。则当Series或DataFrame中有None值时,这两个就不一定相等了。具体如下:
从上述结果可知, nunique()可以通过参数dropna来自定义设置在统计不同值过程中是否需要包含None值,而unique()方法中没有可设置的参数,该方法在统计时无法排除None值。
1、unique()
统计list中的不同值时,返回的是array.它有三个参数,可分别统计不同的量,返回的都是array.
当list中的元素也是list时,尽量不要用这种方法.
import numpy as np a = [1,5,4,2,3,3,5] # 返回一个array print(np.unique(a)) # [1 2 3 4 5] # 返回该元素在list中第一次出现的索引 print(np.unique(a,return_index=True)) # (array([1, 2, 3, 4, 5]), array([0, 3, 4, 2, 1])) # 返回原list中每个元素在新的list中对应的索引 print(np.unique(a,return_inverse=True)) # (array([1, 2, 3, 4, 5]), array([0, 4, 3, 1, 2, 2, 4])) # 返回该元素在list中出现的次数 print(np.unique(a,return_counts=True)) # (array([1, 2, 3, 4, 5]), array([1, 1, 2, 1, 2])) # 当加参数时,unique()返回的是一个tuple,这里利用了tuple的性质,即有多少个元素即可赋值给对应的多少个变量 p,q,m,n = np.unique(a,return_index=True,return_inverse=True,return_counts=True) print(p,q,m,n) # [1 2 3 4 5] [0 3 4 2 1] [0 4 3 1 2 2 4] [1 1 2 1 2] # 注意当list中的元素不是数字而是list的时候,输出的数据类型与list中元素的长度有关 # 利用这种方法对list中元素去重或求里面元素的个数都不是好方法,很容易出错
统计series中的不同值时,返回的是array,它没有其它参数
import pandas as pd se = pd.Series([1,3,4,5,2,2,3]) print(se.unique()) # [1 3 4 5 2]
2、nunique()
可直接统计dataframe中每列的不同值的个数,也可用于series,但不能用于list.返回的是不同值的个数.
df=pd.DataFrame({'A':[0,1,1],'B':[0,5,6]}) print(df) print(df.nunique()) # A B # 0 0 0 # 1 1 5 # 2 1 6 # A 2 # B 3 # dtype: int64
也可与groupby结合使用,统计每个块的不同值的个数.
all_user_repay = all_user_repay.groupby(['user_id'])['listing_id'].agg(['nunique']).reset_index() # user_id nunique # 0 40 1 # 1 56 1 # 2 98 1 # 3 103 1 # 4 122 1
总结
通过对unique()和nunique()函数的详细解析,我们可以清楚地看到它们在功能上的差异。unique()函数主要用于获取数组或列中的唯一值,并返回这些唯一值的数组。而nunique()函数则用于计算唯一值的数量,返回一个整数值。理解并熟练掌握这两个函数,可以在数据分析过程中大大提高效率,特别是在处理大型数据集时。希望本文的讲解能帮助你更好地应用Pandas中的这两个函数,提升你的数据处理能力。
本文来源于#追风少年,由@蜜芽 整理发布。如若内容造成侵权/违法违规/事实不符,请联系本站客服处理!
该文章观点仅代表作者本人,不代表本站立场。本站不承担相关法律责任。
如若转载,请注明出处:https://www.zhanid.com/biancheng/2381.html