在现代数据处理中,JSON格式的数据因其轻量级和易读性而被广泛使用。许多网站和API都会返回JSON格式的数据,如何有效地解析这些数据并将其保存到Excel表格中,是数据分析师和开发者们经常面临的问题。本文将详细介绍如何使用Python解析网页上的JSON数据,并将其保存到Excel文件中,帮助您轻松处理和分析数据。
安装必要的库
import requests import pandas as pd import os import sys import io import urllib3 import json
测试数据
网页上的数据结构如下
{ "success": true, "code": "CIFM_0000", "encode": null, "message": "ok", "url": null, "total": 3, "items": [ { "summaryDate": "20240611", "summaryType": "naturalDay", "workday": true, "newCustNum": 1, "haveCustNum": 1691627, "newAccountNum": 2, "haveAccountNum": 1692934, "totalShare": 4947657341.69, "netCash": -3523387.25, "yield": 0.01386 }, { "summaryDate": "20240612", "summaryType": "naturalDay", "workday": true, "newCustNum": 5, "haveCustNum": 1672766, "newAccountNum": 5, "haveAccountNum": 1674071, "totalShare": 4927109080.29, "netCash": -20735233.55, "yield": 0.01387 }, { "summaryDate": "20240613", "summaryType": "naturalDay", "workday": true, "newCustNum": 4, "haveCustNum": 1662839, "newAccountNum": 5, "haveAccountNum": 1664146, "totalShare": 4927405885.59, "netCash": 110659.8, "yield": 0.01389 } ], "data": null, "info": null }
详细逻辑代码
import requests import pandas as pd import os import sys import io import urllib3 import json urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') url = "https://ip/ma/web/trade/dailySummary?startDate={pi_startdate}&endDate={pi_enddate}" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7", "Accept-Language": "zh-CN,zh;q=0.9", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0", } def save_data(data, columns, excel_path, sheet_name): df = pd.DataFrame(data, columns=columns) if not os.path.exists(excel_path): df.to_excel(excel_path, sheet_name=sheet_name, index=False) else: with pd.ExcelWriter(excel_path, engine='openpyxl', mode='a') as writer: df.to_excel(writer, sheet_name=sheet_name, index=False) def json2list(response_text): # 把json数据转化为python用的类型 json_dict = json.loads(response_text) src_total = json_dict["total"] print("src_total: {}".format(src_total)) items = json_dict["items"] excel_columns = ['summaryDate', 'summaryType', 'workday', 'newCustNum', 'haveCustNum', 'newAccountNum', 'haveAccountNum', 'totalShare', 'netCash', 'yield' ] excel_data = [] # 使用XPath定位元素并打印内容 for item in items: excel_row_data = [] for column_index in range(len(excel_columns)): data = str(item[excel_columns[column_index]]) if excel_columns[column_index] == 'workday': data = str(0 if data == "False" else 1) excel_row_data.append(data) excel_data.append(excel_row_data) trg_total = len(excel_data) # 稽核 print("trg_total: {}".format(trg_total)) vn_biasval = trg_total - src_total if vn_biasval != 0: print("This audit-rule is not passed,diff: {}".format(vn_biasval)) exit(-1) else: print("This audit-rule is passed,diff: {}".format(vn_biasval)) return excel_columns, excel_data if __name__ == '__main__': try: excel_path = "C:/xxx/temp/ylb_dailySummary_{pi_startdate}_{pi_enddate}.xlsx" sheet_name = 'result_data' pi_startdate = 20240611 pi_enddate = 20240613 excel_path = excel_path.format(pi_startdate=pi_startdate, pi_enddate=pi_enddate) url = url.format(pi_startdate=pi_startdate, pi_enddate=pi_enddate) print("url:{}".format(url)) print("excel_path:{}".format(excel_path)) response_text = requests.get(url, headers=headers, timeout=(21, 300), verify=False).content.decode("utf8") excel_columns, excel_data = json2list(response_text) print("=================excel_columns=======================") print(excel_columns) print("=================excel_data==========================") for x in excel_data: print(x) print("=====================================================") # 文件存在,则删除 if os.path.exists(excel_path): os.remove(excel_path) # 保存文件 save_data(excel_data, excel_columns, excel_path, sheet_name) print("save_data is end.") except Exception as e: print("[ERROR]:" + str(e)) exit(-1)
代码解析
1.请求头
构造请求头
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') url = "https://ip/ma/web/trade/dailySummary?startDate={pi_startdate}&endDate={pi_enddate}" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7", "Accept-Language": "zh-CN,zh;q=0.9", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0", }
2.数据保存到excel
如果excel已经存在,那么则会将数据追加到excel中
def save_data(data, columns, excel_path, sheet_name): df = pd.DataFrame(data, columns=columns) if not os.path.exists(excel_path): df.to_excel(excel_path, sheet_name=sheet_name, index=False) else: with pd.ExcelWriter(excel_path, engine='openpyxl', mode='a') as writer: df.to_excel(writer, sheet_name=sheet_name, index=False)
解析json数据获取字段名称以及对应的数据list列表
def json2list(response_text): # 把json数据转化为python用的类型 json_dict = json.loads(response_text) src_total = json_dict["total"] print("src_total: {}".format(src_total)) items = json_dict["items"] excel_columns = ['summaryDate', 'summaryType', 'workday', 'newCustNum', 'haveCustNum', 'newAccountNum', 'haveAccountNum', 'totalShare', 'netCash', 'yield' ] excel_data = [] # 使用XPath定位元素并打印内容 for item in items: excel_row_data = [] for column_index in range(len(excel_columns)): data = str(item[excel_columns[column_index]]) if excel_columns[column_index] == 'workday': data = str(0 if data == "False" else 1) excel_row_data.append(data) excel_data.append(excel_row_data) trg_total = len(excel_data) # 稽核 print("trg_total: {}".format(trg_total)) vn_biasval = trg_total - src_total if vn_biasval != 0: print("This audit-rule is not passed,diff: {}".format(vn_biasval)) exit(-1) else: print("This audit-rule is passed,diff: {}".format(vn_biasval)) return excel_columns, excel_data
3.测试方法入口
if __name__ == '__main__':
测试结果
会生成ylb_dailySummary_20240611_20240613.xlsx
文件
总结
通过本文的介绍,我们了解了如何使用Python解析网页上的JSON数据,并将其保存到Excel文件中。这种方法不仅适用于简单的JSON数据结构,还可以扩展到更复杂的数据结构。通过掌握这些技能,您可以更高效地处理和分析网络上的数据,为您的工作和项目提供有力支持。希望本文的内容能够为您的数据处理之旅提供帮助,让您的数据处理工作更加高效和便捷。
本文来源于#脸ル粉嘟嘟,由@蜜芽 整理发布。如若内容造成侵权/违法违规/事实不符,请联系本站客服处理!
该文章观点仅代表作者本人,不代表本站立场。本站不承担相关法律责任。
如若转载,请注明出处:https://www.zhanid.com/biancheng/2306.html
THE END